Paley–Wiener subspace of vectors in a Hilbert space with applications to integral transforms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pr 2 00 9 HILBERT TRANSFORMS AND THE CAUCHY INTEGRAL IN EUCLIDEAN SPACE

We generalize the notions of harmonic conjugate functions and Hilbert transforms to higher dimensional euclidean spaces, in the setting of differential forms and the Hodge-Dirac system. These harmonic conjugates are in general far from being unique, but under suitable boundary conditions we prove existence and uniqueness of conjugates. The proof also yields invertibility results for a new class...

متن کامل

Subspace classifier in reproducing kernel Hilbert space

To improve the performance of subspace classi er, it is e ective to reduce the dimensionality of the intersections between subspaces. For this purpose, the feature space is mapped implicitly to a high dimensional reproducing kernel Hilbert space and the subspace classi er is applied in this space. As a result of Hiragana recognition experiment, our classi er outperformed the conventional subspa...

متن کامل

Subspace classifier in the Hilbert space

To improve the performance of the subspace classi er, it is e ective to reduce the dimensionality of the intersections between subspaces. For this purpose, the feature space is mapped implicitly to the in nite dimensional Hilbert space and the subspace classi er is applied in the Hilbert space.

متن کامل

Subspace Regression in Reproducing Kernel Hilbert Space

We focus on three methods for finding a suitable subspace for regression in a reproducing kernel Hilbert space: kernel principal component analysis, kernel partial least squares and kernel canonical correlation analysis and we demonstrate how this fits within a more general context of subspace regression. For the kernel partial least squares case a least squares support vector machine style der...

متن کامل

Inversion of Euler integral transforms with applications to sensor data

Following the pioneering work of Schapira, we consider topological Radon-type integral transforms on constructible Z-valued functions using the Euler characteristic as a measure. Contributions include: (1) application of the Schapira inversion formula to target localization and classification problems in sensor networks; (2) extension and application of the inversion formula to weighted Radon t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2009

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2008.12.035